PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 1998

Mesoscopic description of the annealed Ising model, and multiplicative noise
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A new type of Langevin equation exhibiting a nontrivial phase transition associated with the presence of
multiplicative noise is discussed. The equation is derived as a mesoscopic representation of the microscopic
annealed Ising mod¢AIM ) proposed by Thorpe and Beeman, and reproduces perfectly its basic phenomenol-
ogy. The AIM exhibits a nontrivial behavior as the temperature is increased, in particular it presents a disorder-
to-order phase transition at low temperatures, and an order-to-disorder transition at higher temperatures. This
behavior resembles that of some Langevin equations with multiplicative noise, which exhibit also two analo-
gous phase transitions as the noise amplitude is increased. By comparing the standard models for noise-induced
transitions with our new Langevin equation we elucidate that the mechanisms controlling the disorder-to-order
transitions in both of them are essentially different, even though for both of them the presence of multiplicative
noise is a key ingredienfS1063-651X98)06911-9

PACS numbe(s): 05.40:+]

I. INTRODUCTION sence of the NIOT is purely multiplicative, this is, in order to
generate an ordering transition the noise has to appear mul-
A great deal of attention has been recently devoted to théplied by the field variable. In this way, it has been possible
study of physical effects induced by the presence of noisep recognize that the NIOT is characterized by a set of criti-
i.e., phenomena appearing in stochastic systems, whictal exponents other than those of well established universal-
would be absent in the sole presence of the deterministic paity classegas, for example, that of the Ising moggL0,9]. It
of the corresponding Langevin equatifh]. By now it is  has also been shown that due to the multiplicative origin of
clear that noise can generate quite unexpected and countéhis transition it is possible to observe the phenomend in
intuitive behaviors as, for examplstochastic resonande], =1, a dimension at which it is very unusual to observe phase
in which the output to input ratio of a bistable system sub-transitions.
jected to the presence of an oscillating force is strongly en- Other results concerning NIOTs and NIDTs can be found
hanced by the presence of an additional stochastic ternin the literaturd11-13. A common feature of all the previ-
Other examples are the resonant activaf®jp and the noise ously referred models is that they are defined by means of
induced spatial patterrig]. Another type of phenomenon the Langevin equations, that is, equations describing the physics
noise is at the base of are the so calfmise induced phase at a mesoscopic, coarse-grained s¢aidact, the concept of
transitions These came to light in an interesting paper bynoise is meaningful only at this leyelin this context, ana-
Van den Broek, Parrondo, and Tofé&l] (see alsd1,6,7)). lyzing microscopic models that exhibit similar nontrivial be-
These authors pointed out the fact that some Langevin equ&aviors is an interesting task; one of these models is the
tions may exhibit a noise-induced ordering transitionannealed Ising modétL4]. By studying the connection be-
(NIOT), i.e., a phase transition that is not expected from théween microscopic systems and their respective mesoscopic
analysis of the deterministic part of such equation. The pherepresentation one could shed some light on the way in

nomenology is as follows. which microscopic mechanisms generate the very nontrivial
(i) For low enough noise amplitudes the system is disoreffects described at a mesoscopic scale.
dered(i.e., the order parameter takes a zero value In what follows we introduce the time honored annealed

(i) At a certain critical value of the noise amplitude the Ising model. It was proposed and described more than
system exhibits a NIOT and, in a range of noise intensitiegwenty years ago by Thorpe and Beenjad]. A more de-
above it, the system remains ordered. tailed description of it will be presented in the next section;

(i) Finally, for noise amplitudes larger than a secondhere we summarize the main properties we are interested in.
critical value, the noise operates in a more standard waylThe system is an Ising model in which the interactiaghs
disordering the system again. We refer to this second phasemong spins are anneal@iot quenchedrandom variables
transition as noise induced disordering transitibhDT). that change from bond to bond and are extracted from a fixed

A physical explanation of the NIOT was proposed i; probability distribution,P(J). Under certain conditionghis
the ordering of the system is the consequence of the interplag, for some distributiondP(J) to be specified later the
between the noise and the spatial coupli@yy In particular, system phenomenology is as follow$} For low tempera-
the noise generates a short time instability at every singléures the system is disordered, i.e., the averaged magnetiza-
site, and the presence of a spatial coupling renders stable thien is zero.(ii) At a critical value of the temperaturg,, the
nontrivial state generated in that way. system exhibits a second order phase transition. As the tem-

A minimal model capturing the essence of the NIOT hasperature is further increased aboVe the averaged magne-
been recently proposd®]. It has been clarified that the es- tization keeps on growing until it reaches a maximum value
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and it starts decreasing T is increased furtheriii) At a
second critical temperaturé,, the system exhibits another &,
phase transitiofanalogous to the well known ferromagnetic-
paramagnetic disordering transition of the standard pure
Ising mode). The system remains disordered for tempera-
tures higher thar,.

This phenomenology resembles very much the behavior a1,
of the previously described noise induced transitions in
Langevin equations. It is our purpose here to analytically
derive a coarse-grained, mesoscopic representation, in terms &
of a Langevin equation, of the microscopic annealed Ising y
model (AIM) to further explore the eventual relations be-
tween both phenomena.

—
i

Il. ANNEALED ISING MODEL T

Let us consider a-dimensional impure Ising modelinthe  FIG. 1. Magnetization as a function of the temperatiivefor
sense that the value of the coupling constant among shinsdifferent values of8J; 0= 5J;< 8J,< 8J;< 8], for the annealed
changes from bond to bond, being an annealed random vatrising model.

able with a fixed temperature-independent probability distri- . .
compete. That frustration makes the ferromagnetic order pa-

bution, P(J) (which is not quenched but annealed at every . . .
site). Following the strategy proposed by Thorpe and Beefa@meter vanish. As the temperature is further raised the ther-

man[14] the model can be exactly mapped into a standardnal noise activates annihilation of domain walls and the sys-

pure Ising model with an effective paramet&rs=J/T, that tem is more likely to _ord_inate. AS a result, the averaged
depends oP(J) andT, and we write a .(T). In particu- magnetization grows with increasing temperature. At a given
lar [14] ' © point this effect ceases, and the standard role of the tempera-

ture as a disorganizing source sets to work.

f dJ P(J) =0, (1) Ill. CONTINUOUS REPRESENTATION
COt Keg— I/ T]— e(Kegp)

Let us now follow a standard procedur#6] to cast the
where €(K) is the correlation function of two nearest- previous AIM into a continuous Langevin equation. For that
neighbor spins in the pure Ising model. By solving the im-purpose we first consider the pure Ising model case, and
plicit equation(1) one obtainK . as a function of the tem- Write down its associated equilibrium partition function:
perature and the parameters characteri®id). Note that,
in particular, for the two-dimensional case, the Onsager's Z=> exp > Kijsis;
solution[15] provides an explicit value foe(K) and there- {s} i

fore Eqg.(1) can be solved and, furthermore, the system mag; . . L . .
o . Introducing auxiliary Gaussian integrals in terms of continu-
netization can be expressed as a functio ol et us sup-

pose now that, in particular, the distributi®{J) is centered ous variablesp; (with i varying from 1 to the total number of

" . . : spins,N, in the latticg, and performing the change of vari-

at a positive valud, (favoring ferromagnetic orderingand blesy = K- 1d. btain[16
has a variable widtlistandard deviation 5J. The resulting ablesy;=K;; “¢; we obtain[16]
magnetization for this particular type of distribution is quali-
tatively represented in Fig. (see alsq14]). Z“J dydifp - diy

Observe that for narrow distributions dfthe magnetiza-
tion curve is similar to its counterpart in the pure Ising 1
model. Instead, a8J is increased, a disordering tendency is XeXF{ — 7 WK ¢i+2 In coshKi; )| (3)
observed at low temperatures, and in particular, for large
values of the widtias for exampledJ, in Fig. 1) the system  Expanding the hyperbolic cosine in power series, performing
is disordered at low temperatures, and exhibits a disorder-ta transformation to Fourier space, considering only the lead-
order phase transition at a certain temperature. The standaimb dependence on the temperature, and performing the con-
ferromagnetic-paramagnetiorder-to-disorder transition is  tinuous limit we finally obtair{16]
also present and occurs at a variable valug& &r different
values oféJ. ZMJ d[y¢]e H,

The physical mechanism leading to the previous behavior
was argued ifi14] to be the competition between ferromag-
netic and antiferromagnetic types of interactions that H:%J’ dIX[Ko(1— 2K o) #2(X) + p(4Ko— 1) (V )?
emerges when sufficiently large values&if are considered.
In particular, whensJ>J, both positive and negative values + %Két//‘(x)] ()
of the coupling constant are accessible at each bond, and in
that case, for low temperatures, the system is frustrated  with Ky=[d9K(x), and p=1/2[d'K(x)x2. In this way
statein which ferromagnetic and antiferromagnetic domainswe have derived a Ginzsburg-Landau coarse grained Hamil-
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tonian for the Ising model. This could have been guessed 8 ' ' '
priori by using heuristic arguments, but we have preferred to w——96,=13

follow the previous procedure that permits one to obtain ex- L o=l

plicit expressions for the coefficients as a function of the st
microscopic parameters. In this way, observe, for example, [ f < i
that both the diffusion constant and the coefficient of the 4 “\7
guadratic term depend on the coupling throlgh therefore / ‘,-'" “f\
in order to simplify the notation we define the diffusion con- 1, 4 I Yy
stantD = p(4K,—1). Taking only the main relevant depen- ” A 1
dences oD we can write ¥ ’

H=j d9x

wherea is a tuning parameter proportional to the distance to 4 ! i
the critical temperature, arlulis a positive parameter. Let us ® o 0 _;’0 1o H
stress once more that we are neglecting higher-order depen

dences ob anda on D, and we assume them to be unessen-
tial to reproduce the microscopic phenomenology of interest FIG. 2. Averaged magnetization of the Langevin equation as a
at the mesoscopic levéthis hypothesis will be verified af- functllon of a (i.e., the temperatuyein mean field approximation,
terwards. The simplest Langevin equation with a stationaryfor different values obrp .

distribution characterized by a Gibbsian distribution with the

aD b D 2| N
7¢2+Zlﬂ4+ E(le)z y (5) /v/ £

Hamiltonian in Eq.(5) is well known to beg[17,18] der parameter as a function of the temperature characteristic
of the microscopic modelsee Figs. 2 and 3 and compare
drp=—(aD+by?) g+ DV2y+ p(t) (6)  them with Fig. 2.

In the mean field approximation the order-to-disorder
where z(t) is a Gaussian white noise wify(x,t))=0, and  critical point is located aa=0, and numerically we obtain
(p(x,t) p(x’,t"))=&%x—x")8(t—t"). also a critical value close to zero that does not depend on

At this point we can analyze the effects of an annealedr,. On the contrary, the location of the disorder-to-order
distribution of J in the microscopic AIM at the level of transition depends ony, analogously as the location @f
Langevin equations. For that purpose let us observe that idepends odJ in the AIM. Observe that this transition is not
order to mimic the variability of the coupling in the AIM we sharp in the lowermost curve of Fig. 3 due to finite size
can just substitut® at each site in Eq(6) by a stochastic effects. Curves in Fig. 2 and Fig. 3 change with increasing
variable, namely,D—D+&(x,t), with (£(x,t))=0 and oy in the same way as they do in the AIM when increasing
<§(x,t)§(x’,t’)):azDéd(x—x’)é(t—t’), whereD and o 8J, i.e., the larger the noise the smaller the ordering.
play the role ofl, and 8J, respectively, in the microscopic Let us stress once more that in order to obtain the transi-
model. In this way we obtain tion, we change both the coefficient of the linear term and of

the multiplicative noise term. If one of these two coefficients
dip=—[a(D+ &) +by?y+DV2+V(EV )+ 7(t). was kept fixed while the other was changed the microscopic
(7)

This equation(intended in the Ito interpretatidri8]) consti-
tutes our continuous representation of the AIM. Let us un- g
derline that there are two differences with respect to the pure T oS
case, Eq(6), the presence of eultiplicative noise and an 6 T
extra term that couples spatial fluctuationsfwith V.
Changes ofa, the parameter that appears by multiplying
both the linear term and the multiplicative noise, correspond Ca
to temperature variations. Matr” T 7
We have analyzed Ed7) in mean field approximation :
[8,19,9, and by performing systematic numerical simula- Pt TN
tions in two dimensions. The mean field approximation is / X
performed along the lines discussed 19,9. For the nu- 2 ¥ ! i
merical simulation we have employed the Euler metfis, ! ﬂ&
in a 32x 32 lattice, with lattice spacinda=1, and consid- e
ered a time mesht=0.001. Without loss of generality the - xL
parameterd and D have been fixed to 1 and 10, respec- -5 -4 -3 -2 -1 0
tively. Different noise amplitudesgp, have been consid- a
ered. The main results we have obtained are as follows: in FIG. 3. Averaged magnetization of the Langevin equation as a

both the mean field approximation and in the numericakunction ofa (i.e., the temperatuygin numerical simulations, for
simulation, we reproduce the qualitative behavior of the or-different values ofop .
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phenomenology would not be reproducédhe presence of disorder-to-order transition is not purely noise induced. Sec-
the multiplicative noise term is essential to generate theond, considering a Stratonovich representation of the Lange-
disorder-to-order transitionWe have performed a numerical vin equation with multiplicative noise is essential in those
study of Eq.(7) omitting the term proportional t& (¢V ), works to generate noise-induced ordering. In fact, standard
and conclude that none of the previous conclusions is qualitangevin equations such as those describefbitil,9 do
tatively affected by this suppression; by omitting this termnot exhibit NIOTs when intended in the Ito representation
the disorder-to-order critical point is shifted to a lower value[20]. On the other hand, in the model presented here, the
of a, and consequently this term has only a disorganizing-angevin equation is intended in the Ito sense, and due to its
effect. We could consequently write down a minimal modelpeculiar structure, namely, the coupling betwesmd &(t),

just by dropping out this unnecessary term, in the same wathat we have justified from a microscopic point of view, it
we omitted other irrelevant higher order dependence®on can exhibit a rather rich phenomenology. In particular the
in the derivation of the Langevin equation. We conclude thasystem shows an ordering and a disordering transition as the
the proposed Langevin equation with multiplicative noise intemperature is increased but it does not exhibit, for example,
the Ito representation reproduces qualitatively all the inter-the short time instability characteristic of the phenomena dis-
esting properties of the anneal Ising model, and in particularcussed ir5,8,9.

the reentrant phase transitionfherefore, once more it is
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