
PHYSICAL REVIEW E NOVEMBER 1998VOLUME 58, NUMBER 5
Mesoscopic description of the annealed Ising model, and multiplicative noise
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A new type of Langevin equation exhibiting a nontrivial phase transition associated with the presence of
multiplicative noise is discussed. The equation is derived as a mesoscopic representation of the microscopic
annealed Ising model~AIM ! proposed by Thorpe and Beeman, and reproduces perfectly its basic phenomenol-
ogy. The AIM exhibits a nontrivial behavior as the temperature is increased, in particular it presents a disorder-
to-order phase transition at low temperatures, and an order-to-disorder transition at higher temperatures. This
behavior resembles that of some Langevin equations with multiplicative noise, which exhibit also two analo-
gous phase transitions as the noise amplitude is increased. By comparing the standard models for noise-induced
transitions with our new Langevin equation we elucidate that the mechanisms controlling the disorder-to-order
transitions in both of them are essentially different, even though for both of them the presence of multiplicative
noise is a key ingredient.@S1063-651X~98!06911-6#
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I. INTRODUCTION

A great deal of attention has been recently devoted to
study of physical effects induced by the presence of no
i.e., phenomena appearing in stochastic systems, w
would be absent in the sole presence of the deterministic
of the corresponding Langevin equation@1#. By now it is
clear that noise can generate quite unexpected and cou
intuitive behaviors as, for example,stochastic resonance@2#,
in which the output to input ratio of a bistable system su
jected to the presence of an oscillating force is strongly
hanced by the presence of an additional stochastic te
Other examples are the resonant activation@3#, and the noise
induced spatial patterns@4#. Another type of phenomenon th
noise is at the base of are the so callednoise induced phase
transitions. These came to light in an interesting paper
Van den Broek, Parrondo, and Toral@5# ~see also@1,6,7#!.
These authors pointed out the fact that some Langevin e
tions may exhibit a noise-induced ordering transiti
~NIOT!, i.e., a phase transition that is not expected from
analysis of the deterministic part of such equation. The p
nomenology is as follows.

~i! For low enough noise amplitudes the system is dis
dered~i.e., the order parameter takes a zero value!.

~ii ! At a certain critical value of the noise amplitude th
system exhibits a NIOT and, in a range of noise intensi
above it, the system remains ordered.

~iii ! Finally, for noise amplitudes larger than a seco
critical value, the noise operates in a more standard w
disordering the system again. We refer to this second ph
transition as noise induced disordering transition~NIDT!.

A physical explanation of the NIOT was proposed in@5#;
the ordering of the system is the consequence of the inter
between the noise and the spatial coupling@8#. In particular,
the noise generates a short time instability at every sin
site, and the presence of a spatial coupling renders stabl
nontrivial state generated in that way.

A minimal model capturing the essence of the NIOT h
been recently proposed@9#. It has been clarified that the es
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sence of the NIOT is purely multiplicative, this is, in order
generate an ordering transition the noise has to appear
tiplied by the field variable. In this way, it has been possib
to recognize that the NIOT is characterized by a set of cr
cal exponents other than those of well established univer
ity classes~as, for example, that of the Ising model! @10,9#. It
has also been shown that due to the multiplicative origin
this transition it is possible to observe the phenomena id
51, a dimension at which it is very unusual to observe ph
transitions.

Other results concerning NIOTs and NIDTs can be fou
in the literature@11–13#. A common feature of all the previ
ously referred models is that they are defined by mean
Langevin equations, that is, equations describing the phy
at a mesoscopic, coarse-grained scale~in fact, the concept of
noise is meaningful only at this level!. In this context, ana-
lyzing microscopic models that exhibit similar nontrivial b
haviors is an interesting task; one of these models is
annealed Ising model@14#. By studying the connection be
tween microscopic systems and their respective mesosc
representation one could shed some light on the way
which microscopic mechanisms generate the very nontri
effects described at a mesoscopic scale.

In what follows we introduce the time honored annea
Ising model. It was proposed and described more th
twenty years ago by Thorpe and Beeman@14#. A more de-
tailed description of it will be presented in the next sectio
here we summarize the main properties we are intereste
The system is an Ising model in which the interactionsJ
among spins are annealed~not quenched! random variables
that change from bond to bond and are extracted from a fi
probability distribution,P(J). Under certain conditions~this
is, for some distributionsP(J) to be specified later!, the
system phenomenology is as follows:~i! For low tempera-
tures the system is disordered, i.e., the averaged magne
tion is zero.~ii ! At a critical value of the temperature,T1 , the
system exhibits a second order phase transition. As the t
perature is further increased aboveT1 the averaged magne
tization keeps on growing until it reaches a maximum va
6828 © 1998 The American Physical Society
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and it starts decreasing ifT is increased further.~iii ! At a
second critical temperature,T2 , the system exhibits anothe
phase transition~analogous to the well known ferromagneti
paramagnetic disordering transition of the standard p
Ising model!. The system remains disordered for tempe
tures higher thanT2 .

This phenomenology resembles very much the beha
of the previously described noise induced transitions
Langevin equations. It is our purpose here to analytica
derive a coarse-grained, mesoscopic representation, in t
of a Langevin equation, of the microscopic annealed Is
model ~AIM ! to further explore the eventual relations b
tween both phenomena.

II. ANNEALED ISING MODEL

Let us consider ad-dimensional impure Ising model in th
sense that the value of the coupling constant among spiJ
changes from bond to bond, being an annealed random
able with a fixed temperature-independent probability dis
bution, P(J) ~which is not quenched but annealed at eve
site!. Following the strategy proposed by Thorpe and B
man @14# the model can be exactly mapped into a stand
pure Ising model with an effective parameter,K5J/T, that
depends onP(J) andT, and we write asKeff(T). In particu-
lar @14#,

E dJ
P~J!

coth@Keff2J/T#2e~Keff!
50, ~1!

where e(K) is the correlation function of two neares
neighbor spins in the pure Ising model. By solving the i
plicit equation~1! one obtainsKeff as a function of the tem
perature and the parameters characterizingP(J). Note that,
in particular, for the two-dimensional case, the Onsage
solution @15# provides an explicit value fore(K) and there-
fore Eq.~1! can be solved and, furthermore, the system m
netization can be expressed as a function ofT. Let us sup-
pose now that, in particular, the distributionP(J) is centered
at a positive valueJ0 ~favoring ferromagnetic ordering!, and
has a variable width~standard deviation!, dJ. The resulting
magnetization for this particular type of distribution is qua
tatively represented in Fig. 1~see also@14#!.

Observe that for narrow distributions ofJ the magnetiza-
tion curve is similar to its counterpart in the pure Isin
model. Instead, asdJ is increased, a disordering tendency
observed at low temperatures, and in particular, for la
values of the width~as for example,dJ4 in Fig. 1! the system
is disordered at low temperatures, and exhibits a disorde
order phase transition at a certain temperature. The stan
ferromagnetic-paramagnetic~order-to-disorder! transition is
also present and occurs at a variable value ofT for different
values ofdJ.

The physical mechanism leading to the previous beha
was argued in@14# to be the competition between ferroma
netic and antiferromagnetic types of interactions t
emerges when sufficiently large values ofdJ are considered
In particular, whendJ.J0 both positive and negative value
of the coupling constant are accessible at each bond, an
that case, for low temperatures, the system is in afrustrated
statein which ferromagnetic and antiferromagnetic doma
re
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compete. That frustration makes the ferromagnetic order
rameter vanish. As the temperature is further raised the t
mal noise activates annihilation of domain walls and the s
tem is more likely to ordinate. As a result, the averag
magnetization grows with increasing temperature. At a giv
point this effect ceases, and the standard role of the temp
ture as a disorganizing source sets to work.

III. CONTINUOUS REPRESENTATION

Let us now follow a standard procedure@16# to cast the
previous AIM into a continuous Langevin equation. For th
purpose we first consider the pure Ising model case,
write down its associated equilibrium partition function:

Z5(
$s%

expS (
i j

Ki j sisj D . ~2!

Introducing auxiliary Gaussian integrals in terms of contin
ous variablesf i ~with i varying from 1 to the total number o
spins,N, in the lattice!, and performing the change of var
ablesc i5Ki j

21f j we obtain@16#

Z}E dc1dc2•••dcN

3expF2
1

4
c iKi j c j1(

i
ln cosh~Ki j c j !G . ~3!

Expanding the hyperbolic cosine in power series, perform
a transformation to Fourier space, considering only the le
ing dependence on the temperature, and performing the
tinuous limit we finally obtain@16#

Z}E d@c#e2H,

H5 1
4 E ddx@K0~122K0!c2~x!1r~4K021!~¹c!2

1 1
3 K0

4c4~x!# ~4!

with K05*ddxK(x), and r51/2*ddxK(x)x2. In this way
we have derived a Ginzsburg-Landau coarse grained Ha

FIG. 1. Magnetization as a function of the temperatureT, for
different values ofdJ; 05dJ1,dJ2,dJ3,dJ4 for the annealed
Ising model.



d
t

ex
he
pl
th

n-
-

t
s
pe
en
e

-
ry
he

le
f
t

e

c

n
u

g
n

la
i

e
c
-
:
ca
or

istic
re

er

on
er

t
ze
ing
ng

nsi-
of
ts
pic

s a
,

s a
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tonian for the Ising model. This could have been guessea
priori by using heuristic arguments, but we have preferred
follow the previous procedure that permits one to obtain
plicit expressions for the coefficients as a function of t
microscopic parameters. In this way, observe, for exam
that both the diffusion constant and the coefficient of
quadratic term depend on the coupling throughK0 ; therefore
in order to simplify the notation we define the diffusion co
stantD5r(4K021). Taking only the main relevant depen
dences onD we can write

H5E ddxFaD

2
c21

b

4
c41

D

2
~¹c!2G , ~5!

wherea is a tuning parameter proportional to the distance
the critical temperature, andb is a positive parameter. Let u
stress once more that we are neglecting higher-order de
dences ofb anda on D, and we assume them to be uness
tial to reproduce the microscopic phenomenology of inter
at the mesoscopic level~this hypothesis will be verified af
terwards!. The simplest Langevin equation with a stationa
distribution characterized by a Gibbsian distribution with t
Hamiltonian in Eq.~5! is well known to be@17,18#

] tc52~aD1bc2!c1D¹2c1h~ t ! ~6!

whereh(t) is a Gaussian white noise with^h(x,t)&50, and
^h(x,t)h(x8,t8)&5dd(x2x8)d(t2t8).

At this point we can analyze the effects of an annea
distribution of J in the microscopic AIM at the level o
Langevin equations. For that purpose let us observe tha
order to mimic the variability of the coupling in the AIM w
can just substituteD at each site in Eq.~6! by a stochastic
variable, namely,D→D1j(x,t), with ^j(x,t)&50 and
^j(x,t)j(x8,t8)&5sD

2 dd(x2x8)d(t2t8), where D and sD

play the role ofJ0 anddJ, respectively, in the microscopi
model. In this way we obtain

] tc52@a~D1j!1bc2#c1D¹2c1¹~j¹c!1h~ t !.
~7!

This equation~intended in the Ito interpretation@18#! consti-
tutes our continuous representation of the AIM. Let us u
derline that there are two differences with respect to the p
case, Eq.~6!, the presence of amultiplicative noise, and an
extra term that couples spatial fluctuations ofD with ¹c.
Changes ofa, the parameter that appears by multiplyin
both the linear term and the multiplicative noise, correspo
to temperature variations.

We have analyzed Eq.~7! in mean field approximation
@8,19,9#, and by performing systematic numerical simu
tions in two dimensions. The mean field approximation
performed along the lines discussed in@8,19,9#. For the nu-
merical simulation we have employed the Euler method@19#,
in a 32332 lattice, with lattice spacingDa51, and consid-
ered a time meshDt50.001. Without loss of generality th
parametersb and D have been fixed to 1 and 10, respe
tively. Different noise amplitudes,sD , have been consid
ered. The main results we have obtained are as follows
both the mean field approximation and in the numeri
simulation, we reproduce the qualitative behavior of the
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der parameter as a function of the temperature character
of the microscopic model~see Figs. 2 and 3 and compa
them with Fig. 1!.

In the mean field approximation the order-to-disord
critical point is located ata50, and numerically we obtain
also a critical value close to zero that does not depend
sD . On the contrary, the location of the disorder-to-ord
transition depends onsD , analogously as the location ofT1
depends ondJ in the AIM. Observe that this transition is no
sharp in the lowermost curve of Fig. 3 due to finite si
effects. Curves in Fig. 2 and Fig. 3 change with increas
sD in the same way as they do in the AIM when increasi
dJ, i.e., the larger the noise the smaller the ordering.

Let us stress once more that in order to obtain the tra
tion, we change both the coefficient of the linear term and
the multiplicative noise term. If one of these two coefficien
was kept fixed while the other was changed the microsco

FIG. 2. Averaged magnetization of the Langevin equation a
function of a ~i.e., the temperature!, in mean field approximation
for different values ofsD .

FIG. 3. Averaged magnetization of the Langevin equation a
function of a ~i.e., the temperature!, in numerical simulations, for
different values ofsD .
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phenomenology would not be reproduced.The presence o
the multiplicative noise term is essential to generate
disorder-to-order transition. We have performed a numerica
study of Eq.~7! omitting the term proportional to¹(j¹c),
and conclude that none of the previous conclusions is qu
tatively affected by this suppression; by omitting this te
the disorder-to-order critical point is shifted to a lower val
of a, and consequently this term has only a disorganiz
effect. We could consequently write down a minimal mod
just by dropping out this unnecessary term, in the same
we omitted other irrelevant higher order dependences oD
in the derivation of the Langevin equation. We conclude t
the proposed Langevin equation with multiplicative noise
the Ito representation reproduces qualitatively all the inte
esting properties of the anneal Ising model, and in particu
the reentrant phase transition.Therefore, once more it is
shown that the multiplicative noise is the key ingredient
highly nontrivial phenomena in stochastic systems at a
soscopic level.

Let us finally remark that the phenomenon we have j
describedis not the usual noise induced transition as repor
in previous works@5,11,9#. First of all, in those works only
the multiplicative noise amplitude has to be changed to
tain a NIOT, while in our case the transition is obtained
varying the parametera that multiplies both the multiplica-
tive noise and the linear term. Consequently in our case
o,
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disorder-to-order transition is not purely noise induced. S
ond, considering a Stratonovich representation of the Lan
vin equation with multiplicative noise is essential in tho
works to generate noise-induced ordering. In fact, stand
Langevin equations such as those described in@5,11,9# do
not exhibit NIOTs when intended in the Ito representati
@20#. On the other hand, in the model presented here,
Langevin equation is intended in the Ito sense, and due to
peculiar structure, namely, the coupling betweena andj(t),
that we have justified from a microscopic point of view,
can exhibit a rather rich phenomenology. In particular t
system shows an ordering and a disordering transition as
temperature is increased but it does not exhibit, for exam
the short time instability characteristic of the phenomena d
cussed in@5,8,9#.
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